LangGraph 八股
发表于|更新于|langgraph
|浏览量:
LangGraph 八股
文章作者: Roger-Lv
版权声明: 本博客所有文章除特别声明外,均采用 CC BY-NC-SA 4.0 许可协议。转载请注明来源 Roger-Lv's space!
相关推荐
2025-12-04
LangGraph 中 checkpoint_id 的更新时机:每个对话轮次还是每个节点流转?
LangGraph 中 checkpoint_id 的更新时机:每个对话轮次还是每个节点流转? 在使用 LangGraph 构建多轮对话或工作流时,我们经常会遇到 checkpoint(检查点)的概念。每个检查点都有一个唯一的 checkpoint_id,用于标识该次状态快照。一个常见的问题是:checkpoint_id 是在每个对话轮次更新一次,还是在节点(node)之间流转时就会更新一次? 本文将通过分析 LangGraph 源码(基于 langgraph==0.2.0 左右版本)来回答这个问题,并解释其背后的设计逻辑。 1. checkpoint_id 是如何生成的? 首先,我们来看 checkpoint_id 的生成方式。在 langgraph/checkpoint/base/__init__.py 中,有一个 create_checkpoint 函数: 12345678910111213141516171819def create_checkpoint( checkpoint: Checkpoint, channels: Mapping[str, BaseC...
2025-12-09
Agent框架集成多模态能力底层实现
Agent框架集成多模态能力底层实现 该项目处理多模态RAG返回图片的完整流程: 架构概述 该项目采用分层架构处理多模态RAG: 前端接口层:通过schema.py中的ImageContent和ImageUrl模型支持base64和HTTPS两种图片URL格式 RAG核心层:rag.py中的RagClient提供统一的向量检索接口 多模态嵌入层:multi_model.py中的AliyunEmbeddings使用阿里云DashScope的多模态嵌入API 数据存储层:使用Qdrant向量数据库存储图片和文本的嵌入向量 图片处理流程 1. 图片存储阶段 在feishu-crawler子项目中,图片处理流程如下: 图片下载:DownloadImageTransform从飞书下载图片到本地文件系统 图片摘要生成:GenerateImageSummaryTransform使用VLLM模型为图片生成文字描述 多模态嵌入:EmbedImageTransform调用MultiModelEmbedder生成图片+文字的联合嵌入向量 向量存储:将base64编码的图片数据、文字描述和嵌入向量...
评论
公告
Welcome!

